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Abstract - In this work, a set of features is evaluated for musical instru-
ment recognition out of monophonic musical signals. Aiming to achieve a
compact representation, the adopted features regard only spectral charac-
teristics of sound and are limited in number. On top of these descriptors,
various classification methods are implemented and tested. Over a dataset
of 1007 tones from 27 musical instruments and without employing any hi-
erarchical structure, Quadratic Discriminant Analysis shows the lowest
error rate (7.19% for the individual instrument and 3.13% for instrument
families), outperforming all the other classification methods (Canonical
Discriminant Analysis, Support Vector Machines, Nearest Neighbours).
The most relevant features are demonstrated to be the inharmonicity, the
spectral centroid and the energy contained in the first partial.

INTRODUCTION

This paper addresses the problem of musical instrument classification from
audio sources. The need for such application strongly arises in the context of
multimedia content description. A great number of commercial applications
will be soon available, especially in the field of multimedia databases, such as
automatic indexing tools, intelligent browsers and search engines with querying
by content capabilities.

Focussing on this area, the forthcoming MPEG-7 standard should provide
a list of metadata for multimedia content, nevertheless two important aspects
still need to be explored further. First, it is needed to identify what are the best
features suited for a particular task. Then, once obtained a set of descriptors,
some classification algorithms should be employed to organize metadata in
meaningful categories. All these facets will be considered by present work with
the objective of automatic timbres classification for sound databases.

BACKGROUND

Timbre differs from the other sound attributes, namely pitch, loudness, and
duration, because it is ill-defined; in fact, it cannot be directly associated to
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a particular physical quantity. The uncertainty about the notion of timbre is
reflected by the huge amount of studies that have tackled this problem. Early
works on timbre recognition focussed on the exploration of possible relationship
between the perceptual and the acoustic domain [3]. Recently, the diffusion of
multimedia databases has brought to the fore the problem of musical instru-
ment identification out of a fragment of audio signal and a recent overview on
the topic is presented in [4]. Usually, this task is accomplished by training the
classifier with labelled instances (supervised learning).

FEATURE EXTRACTION

The process of feature extraction is crucial; it should perform efficient data
reduction while preserving the appropriate amount of information. Thus, sound
analysis techniques must be tailored to the temporal and spectral evolution
of musical signals. As it will be demonstrated in the results section, a set of
features related mainly to the harmonic properties of sounds allows a simplified
representation of data, without losing important characteristics. Moreover,
reducing the number of features prevents from incurring into the so called
curse of dimensionality [1]. The extraction of descriptors relies on a number
of preliminary steps, that is temporal segmentation of the signal, detection
of the fundamental frequency and the estimation of the harmonic structure
(Figure 1).

After band-pass filtering the signal, a procedure based on energy evaluation
is carried out in order to have a rough estimation of event boundaries. A
RMS-energy curve is computed on the windowed signal (Hamming, 46 ms) and
compared with an absolute threshold (silence detection). A finer analysis is
then conducted at a 5ms frame rate to look for a 6dB step around every
rough estimate. Through pitch detection, we achieve a refinement of signal
segmentation, identifying notes that are not well defined by the energy curve or
that are possibly played legato. The pitch-tracking algorithm employed follows
the one presented in [8], so it will not be described here. The output of the
pitch tracking is the average value (in hertz) of each note hypothesis, a frame
by frame value of pitch and an accuracy value that measures the uncertainty
of the estimate.

We collect a total of 18 descriptors for each tone isolated through the proce-
dure just described. More precisely, we compute mean and standard deviation
of 9 features over the length of a tone. The Zero Crossing Rate is measured
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Figure 1: Description of the feature extraction process (see text for details).
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Figure 2: Taxonomy of the instruments employed in the experiments.

directly from the waveform and normalized with respect to the size of the win-
dow. Then, the harmonic structure of the signal is evaluated through Short-
Time Fourier Analysis with half-overlapping windows. The size of the analysis

window is variable in order to have a frequency resolution of at least 1/ 24th of
octave, even for the lowest tones (1024 + 8192 samples). From the harmonic
analysis we calculate the remaining features: spectral centroid (i.e. the centre
of gravity of the spectrum), bandwidth (or magnitude-weighted differences be-
tween the spectral components and the centroid), inharmonicity (cumulative
distance between the estimated partials and their theoretic values), percentage
of energy contained into the first four partials, and harmonic energy skewness
(sum of energy confined in the partials region, multiplied by the respective
inharmoncities).

EXPERIMENT

The dataset adopted has been extracted by the MumMms (McGill University
Master Samples) ¢Ds [9], which is a library of isolated sample tones from a
wide number of musical instruments, played with several articulation styles
and covering the entire pitch range. We considered 30 musical instruments
ranging from orchestral sounds (strings, woodwinds, brass) to pop/electronic
instruments (bass, electric and distorted guitar). Since the saxophones (alto,
soprano, tenor, baritone) have been collapsed to a single instrument class, the
total number of instruments in our tests will be 27 (Figure 2). The audio files
have been analysed by the feature extraction algorithms. If the accuracy of
a pitch estimate is below a pre-defined threshold, the corresponding tone is
rejected from the training set. Following this procedure, the number of tones
accepted for training/testing is 1007 in total. Various classification techniques
have been implemented and tested: Canonical Discriminant Analysis (CDA),
Quadratic Discriminant Analysis (QDA), Nearest Neighbours (k-NN) and Sup-
port Vector Machines (SsvM). k-NN has been tested with k = 1,3, 5,7 and with
3 different distance metrics (1-norm, 2-norm, 3-norm). In one experiment, we
modified the input space through a kernel function. For svMm, we adopted a
software tool developed at the Royal Holloway University of London [10]. A
number of kernel functions has been considered (dot product, simple polyno-
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Figure 3: Graphical representation of the success rates for each experiment.

mial, Radial Basis Functions, linear splines, regularized Fourier). All error
rates estimates reported in the next section have been computed using a leave-
one-out procedure.

RESULTS

Figure 3 provides a graphical representation of the best results both at
instrument level (17, 20 and 27 instruments) and at family level (pizzicato-
sustained, instrument family). QDA performed better than any other classifier
in every test, with an impressive success rate of 92.81% for 27 instruments and
with an almost stable trend (from 94.7% to 92.81%). The second best score
was achieved by svM with Radial Basis Function kernel; it must be noted that
increasing the number of instruments, SVM success rates decreased from 80.20%
(17 instruments) to 69.71% (27 instruments). In comparison with the work by
Marques and Cano [5], where 8 instruments were recognized with an error rate
of 30%, the svM implemented in our experiments had an error rate of 19.8% in
the classification of 17 instruments. CDA and k-NN never obtained momentous
results (respectively 66.74% and 65.74% with 27 instruments). Among the k-NN
classifiers, 1-NN with 1-norm distance metric obtained the best performance.
Using a kernel function to modify the input space did not bring any advantage
(71% with kernel and 74% without kernel for 20 instruments). A deeper analysis
of the results achieved with QDA showed that most of the misclassifications are
within the correct instrument family (e.g. doublebass classified as cello), except
for piano and cello, classified respectively as viola pizzicato (13% of piano tones)
and classic guitar (15% of cello tones). We have also calculated a list of the
most relevant features through the forward selection procedure detailed in [7].
The values reported are the normalized versions of the statistics on which the
procedure is based. They can be not strictly decreasing, because a feature might
bring more information only jointly with other features. For 27 instruments,



Feature Name Score

Inharmonicity mean 1.0

Centroid mean 0.202121
Centroid standard deviation 0.184183
Harmonic energy percentage | 0.144407
(partial 0) mean

Zero crossing mean 0.130214
Bandwidth standard deviation 0.141585
Bandwidth mean 0.1388

Harmonic energy skewness stan- | 0.130805

dard deviation
Harmonic energy percentage | 0.116544
(partial 2) stdandard deviation

(a) (b)

Figure 4: Most discriminating features for 27 instruments (a) and dataset for
6 instruments projected to the first three canonical variates (b).

the most informative feature has been the mean of the inharmonicity, followed
by the mean and standard deviation of the spectral centroid and the mean
of the energy contained in the first partial (see Figure 4(a)). In Figure 4(b),
the dataset is projected in the first three canonical variates, for a subset of 6
instruments. At the instrument family level, our best success rate (96.77%) was
better than any other work we are aware of, although the different taxonomy
employed by Klapuri [2] and the introduction of new families with respect
to Martin [6] makes a direct comparison difficult. Pizzicato and sustained
instruments were recognized with 97.24% success rate which is lower than those
reported by Martin and Klapuri (99%) [6, 2]. However, the family of pizzicati
in our dataset is larger than the ones in cited experiments. Moreover, we did
not make use of any temporal feature.

In one of our experiments, we have also introduced a machine-built de-
cisional tree. We used a hierarchical clustering algorithm [11] to build the
structure. CDA or QDA methods have been employed at each node of the hier-
archy. Even with this techniques, though, we could not improve the error rates;
for instance, the classification of 27 instruments, using CDA in each decisional
node, brought the results down to 59.89% (against 66.74% with flat CDA clas-
sification). As a final remark, the computational complexity of CDA and QDA
are equivalent since they are both in the order of ©(kp?), p being the number
of features and k the number of classes.

DISCUSSION AND FURTHER WORK

As it was demonstrated, a set of spectral features combined with QDA classi-
fiers showed the best performances; other broadly used classifiers could not pro-
vide comparable results. The experiments described so far has been conducted



on real acoustic instruments with relatively little influence of the reverberant
field. A preliminary test with performances of trumpet and trombone has
shown that our features are quite robust against the effects of room acoustics.
The only weakness is their dependence from the pitch, which can be reliably
estimated out of monophonic sources only. We are planning to introduce novel
harmonic features that are independent from pitch estimation.
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